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Quasisymmetry requires equilibrium and GC integrability

Definition 1. (quasisymmetric magnetic field)

A magnetic field B is quasisymmetric if

(∇× B)× B = ∇p

for some function p and the (leading-order) guiding center
Lagrangian

L(X , v‖, Ẋ , v̇‖) =(mv‖b(X ) + eA(X )) · Ẋ

−
(

1

2
mv2‖ + µ|B(X )|

)
admits a spatial symmetry.



There are various reasons to relax equilibrium constraint.

Equilibria may support flow

∇× (v × B) = 0

∇ · (ρv) = 0

ρv · ∇v +∇p = (∇× B)× B



There are various reasons to relax equilibrium constraint.

Equilibria sometimes support flow

Equilibria sometimes support an anisotropic pressure tensor

∇× (v × B) = 0

∇ · (ρv) = 0

ρv · ∇v +∇ · P = (∇× B)× B



There are various reasons to relax equilibrium constraint.

Equilibria sometimes support flow

Equilibria sometimes support an anisotropic pressure tensor

Active injection of particles or waves may alter equilibrium
force balance

∇× (v × B) = 0

∇ · (ρv) = 0

ρv · ∇v +∇ · P = (∇× B)× B + Fext



Weak quasisymmetry requires GC integrability only

Definition 2. (weakly quasisymmetric magnetic field)

A magnetic field B is weakly quasisymmetric if the (leading-order)
guiding center Lagrangian

L(X , v‖, Ẋ , v̇‖) =(mv‖b(X ) + eA(X )) · Ẋ

−
(

1

2
mv2‖ + µ|B(X )|

)
admits a spatial symmetry.



We know a little bit about weak quasisymmetry.

weak quasisymmetry: what we know

1 Quasisymmetry ⇒ Weak Quasisymmetry

2 Weak Quasisymmetry ��⇒ Quasisymmetry

think of non-equilibrium axisymmetric fields



We mostly do not understand weak quasisymmetry.

weak quasisymmetry: open questions

1 Are all weakly-quasisymmetric B invariant under rotations
and/or translations?
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weak quasisymmetry: open questions

1 Are all weakly-quasisymmetric B invariant under rotations
and/or translations?

2 If not, how to construct non-axisymmetric examples?

3 Are quasisymmetric B perturbations of
weakly-quasisymmetric B?

4 Is weak quasisymmetry weak enough to capture eqm flow or
anisotropy?



We mostly do not understand weak quasisymmetry.

weak quasisymmetry: open questions

1 Are all weakly-quasisymmetric B invariant under rotations
and/or translations?

2 If not, how to construct non-axisymmetric examples?

3 Are quasisymmetric B perturbations of
weakly-quasisymmetric B?

4 Is weak quasisymmetry weak enough to capture eqm flow or
anisotropy?

5 Best ways to tackle (1)-(4)?



The purpose of this talk:
Show that weakly-quasisymmetric

fields arise as solutions of a nonlinear
PDE



Why?

Provide a concrete description of
weakly-quasisymmetric fields

the definition is rather abstract

Introduce familiar framework to begin addressing
open questions about weak quasisymmetry



The PDE will be derived as follows

Step One:
Identify PDE for generator u of weak quasisymmetry

Step Two:
Extract PDE for B as compatibility conditions for u

equation to have solution



First step is straightforward Lagrangian mechanics

Theorem 1. (conditions for weak quasisymmetry)

A magnetic field B is weakly-quasisymmetric if and only if there is
a vector field u such that

(∇× B)× u +∇(u · B) = 0

∇× (B × u) = 0

∇ · u = 0.

See:

Burby, Qin, “Toroidal precession as a geometric phase,” Phys.
Plasmas 20, 012511 (2013).

R. S. MacKay’s talk from first Simon’s Meeting



Second step is more sublte

Basic idea:
Find conditions on B ensuring solution for u exists



Second step is more sublte

Basic idea:
Find conditions on B ensuring solution for u exists

How do we find such compatibility conditions?



Illustrative example
Surfaces perpendicular to a magnetic field



Perp. surfaces satisfy overdetermined PDE.

b(x)×∇f (x) = 0, ∀x , ∇f (x) 6= 0

Three equations; one unknown function f !
⇒ We should expect compatibility conditions for a solution to exist



Equality of mixed partials gives compatibility condition.

0 = ∇ · (b ×∇f ) = (∇× b) · ∇f

⇓ (because a solution must satisfy ∇f = λb) ⇓

τ = b · ∇ × b = 0



Equality of mixed partials gives compatibility condition.

0 = ∇ · (b ×∇f ) = (∇× b) · ∇f

⇓ (because a solution must satisfy ∇f = λb) ⇓

τ = b · ∇ × b = 0

This is a compatibility condition!



Frobenius Thm says this is only compatibility condition.

Theorem (Frobenius)

a If a solution f exists, τ = 0 everywhere.

b Conversely, if τ = 0 everywhere, a smooth solution exists in a
neighborhood of each x .



Q: How can we generalize this example to treat
weak quasisymmetry?



A: Resort to exterior differential systems (EDS)
theory!



EDS theory systematizes finding all* compatibility
conditions for any PDE.

CC extraction procedure:

(0) Reformulate PDE as vanishing of differential forms θi

b ×∇f = 0

m
θ = (b · dx) ∧ df = 0



EDS theory systematizes finding all* compatibility
conditions for any PDE.

CC extraction procedure:

(0) Reformulate PDE as vanishing of differential forms θi

(1) For each dependent variable Q, set dQ = p(Q) · dx in θi ,dθi ;
find constraints on p(Q)’s. (x = independent variables)

θ = (b · dx) ∧ (p(f ) · dx) = 0

dθ = (∇× b · dS) ∧ (p(f ) · dx) = 0

m
b × p(f ) = 0

(∇× b) · p(f ) = 0

The p’s may be interpreted as derivatives



EDS theory systematizes finding all* compatibility
conditions for any PDE.

CC extraction procedure:

(0) Reformulate PDE as vanishing of differential forms θi

(1) For each dependent variable Q, set dQ = p(Q) · dx in θi ,dθi ;
find constraints on p(Q)’s. (x = independent variables)

(2) If p-equations constrain dependent variables, sub constraint
into θi then return to (1). Otherwise move on.

f does not appear, so nothing to do!



EDS theory systematizes finding all* compatibility
conditions for any PDE.

CC extraction procedure:

(0) Reformulate PDE as vanishing of differential forms θi

(1) For each dependent variable Q, set dQ = p(Q) · dx in θi ,dθi ;
find constraints on p(Q)’s. (x = independent variables)

(2) If p-equations constrain dependent variables, sub constraint
into θi then return to (1). Otherwise move on.

(3) If p-equations constrain independent variables, impose as CC

b × p(f ) = 0, (∇× b) · p(f ) = 0

m
p(f ) = λb, (∇× b) · p(f ) = 0

m
p(f ) = λb, b · (∇× b)(x) = 0



EDS theory systematizes finding all* compatibility
conditions for any PDE.

CC extraction procedure:

(0) Reformulate PDE as vanishing of differential forms θi

(1) For each dependent variable Q, set dQ = p(Q) · dx in θi ,dθi ;
find constraints on p(Q)’s. (x = independent variables)

(2) If p-equations constrain dependent variables, sub constraint
into θi then return to (1). Otherwise move on.

(3) If p-equations constrain independent variables, impose as CC

(4) If p-equations solvable for each x , apply prolongation.
Otherwise return to (2).

θ = (b · dx) ∧ df → Θ = df − λb · dx

Prolongation differentiates the PDE in an intelligent way



EDS theory systematizes finding all* compatibility
conditions for any PDE.

CC extraction procedure:

(0) Reformulate PDE as vanishing of differential forms θi

(1) For each dependent variable Q, set dQ = p(Q) · dx in θi ,dθi ;
find constraints on p(Q)’s. (x = independent variables)

(2) If p-equations constrain dependent variables, sub constraint
into θi then return to (1). Otherwise move on.

(3) If p-equations constrain independent variables, impose as CC

(4) If p-equations solvable for each x , apply prolongation.
Otherwise return to (2).

(5) Apply “Cartan’s test.” If pass, stop. If fail, return to (1).

Cartan’s test amounts to linear algebra. Will not discuss here.



EDS theory systematizes finding all* compatibility
conditions for any PDE.

*Important Technicalities

CCs necessary conditions for any solution to exist

All CCs satisfied ⇒ formal power series solutions exist

If PDE coefficients real analytic, formal power series converge
in small domain. (Generalized Cauchy-Kowalevski Thm.)

Sometimes you’re lucky! Satisfying all CCs may give
exactly-solvable system.

This happens for weak quasisymmetry!



Preceding procedure produces all compatibility conditions
for u-equation.

Theorem 2. (compatibility conditions for weak quasisymmetry)

A non-vacuum magnetic field B is weakly-quasisymmetric if and
only if there are potentials ϕ,ψ such that

∇ϕ =(∇× B)× e
∇ψ =B × e−ϕe

0 =e · ∇(B · ∇|B| × ∇τ)

where τ = b · ∇ × b and the vector field e is given by

e =
∇|B| × ∇τ

B · ∇|B| × ∇τ
.



Preceding procedure produces all compatibility conditions
for u-equation.

Theorem 2. (compatibility conditions for weak quasisymmetry)

A non-vacuum magnetic field B is weakly-quasisymmetric if and
only if there are potentials ϕ,ψ such that

∇ϕ =(∇× B)× e
∇ψ =B × e−ϕe

0 =e · ∇(B · ∇|B| × ∇τ)

where τ = b · ∇ × b and the vector field e is given by

e =
∇|B| × ∇τ

B · ∇|B| × ∇τ
.

Any 3D solution of this PDE will be non-axisymmetric weakly
quasisymmetric field.



Where do we go from here?

1. Near-axis expansion of PDE for weak-quasisymmetry



Where do we go from here?

2. Even weaker quasisymmetry

When ε = ρ/L = 0, the GC Lagrangian blows up...

L(X , v‖, Ẋ , v̇‖) =(mv‖b(X ) +
1

ε
eA(X )) · Ẋ

−
(

1

2
mv2‖ + µ|B(X )|

)



Where do we go from here?

2. Even weaker quasisymmetry

...but the GC Poisson bracket and Hamiltonian do not.

{f , g} = (b · ∇f )∂v‖g − ∂v‖f (b · ∇g) + O(ε)

H =
1

2
mv2‖ + µ|B|+ O(ε)



Where do we go from here?

2. Even weaker quasisymmetry

Theorem 3 (Conditions for symmetry of leading-order Hamiltonian
GC dynamics)

The leading-order GC Poisson bracket and Hamiltonian admit a
spatial symmetry if and only if there is a u such that

u · ∇|B| = 0

u · ∇B − B · ∇u = 0.

(N. B. These conditions are satisfied automatically assuming weak
quasisymmetry.)

What are the compatibility conditions on B to ensure u exists?



Where do we go from here?

3. Continue to improve understanding of weak quasisymmetry

Switch roles of B and u to find compatibility conditions on u.

· e.g. if ∇u + (∇u)T = 0 is compatibility condition, then
all weakly quasisymmetric fields must be axisymmetric.



Where do we go from here?
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Switch roles of B and u to find compatibility conditions on u.

· e.g. if ∇u + (∇u)T = 0 is compatibility condition, then
all weakly quasisymmetric fields must be axisymmetric.

If weak quasisymmetric fields exist, can they support flow or
anisotropic pressure?



Where do we go from here?

3. Continue to improve understanding of weak quasisymmetry

Switch roles of B and u to find compatibility conditions on u.

· e.g. if ∇u + (∇u)T = 0 is compatibility condition, then
all weakly quasisymmetric fields must be axisymmetric.

If 3D weak quasisymmetric fields possible, can it support flow
or anisotropic pressure?

If 3D weak quasisymmetry impossible, how nearly can it be
satisfied?
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